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Abstract

Treatment responders are individuals whose outcomeswould change

from negative to positive if treated, and learning a classifier to

predict responders would help causal decision-making in real ap-

plications. Although many treatment effect estimation methods

have been proposed to identify treatment responders, there are

fundamental differences between treatment effect estimation and

treatment responder classification, including: (1) accurate causal ef-

fect estimation is not necessary for optimal intervention decisions;

(2) methods for accurate causal effect estimation do not directly

optimize classification loss; (3) treatment responder classification

requires identifying joint potential outcomes, while treatment ef-

fect estimation focuses on marginal distributions. To fill this gap,

we tackle the treatment responder classification problem without

assuming monotonicity. We derive sharp bounds of the probabil-

ity that an individual is a responder and determine a sharp upper

bound on the weighted classification risk to measure the worst

classification performance. Based on these findings, we further pro-

pose a Classifying Treatment Responder Learning (CTRL) algo-

rithm to accurately identify the treatment responders, and theoreti-

cally demonstrate the superiority of jointly learning over two-stage

learning. Extensive experiments on semi-synthetic and real-world

datasets show that our method better predicts treatment responders

and adaptively trades off false-positives and false-negatives with

varying weight coefficients.
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1 Introduction

Estimating treatment effects from observational data plays a cru-

cial role in a wide range of areas such as healthcare [12], market-

ing [16], and reinforcement learning [32]. The key challenge of

this task arises because, for any individual in the collected data, we

can only observe the factual outcome associated with the actually

assigned treatment, while the counterfactual outcomes associated

with other treatment arms are unavailable, which is also known as

the fundamental problem of causal inference [15, 25]. To accurately

estimate counterfactual results, benefiting from recent advances

in deep learning, representation learning methods are proposed to

learn a balanced representation of covariates to remove confound-

ing bias [11, 17, 30, 37], demonstrating superior and promising

prediction performance.

Despite many causal effect estimation methods have been pro-

posed, methods designed directly for causal classification
1
have

rarely been discussed. In particular, when the estimated causal

effects are utilized for downstream decision-making tasks, the pop-

ulation will be classified into two subgroups, containing individuals

who will apply the treatment and those who will not, respectively.

In such cases, as shown in Table 1, researchers aim to identify indi-

viduals whose outcomes would change from negative to positive

if treated, i.e., Treatment Responder Classifier. This is fundamen-

tally different from the causal effects estimation task in the fol-

lowing three aspects: (1) Accurate causal effect estimation is

not necessary to make optimal intervention decisions, and

more accurate estimates of causal effects may not imply better

decision-makings [9]. (2) Causal effect estimation methods do

not directly optimize the classification loss, which may fail in

producing the Bayes-optimal classifiers if the causal effect estimates

incorporate errors [18]. (3)Causal classification consists of iden-

tifying treatment responders, those individuals whose outcome

would change from negative to positive if they were treated [8],

which requires the estimation of joint potential outcomes of an

individual. Nonetheless, the conditional average treatment effect

1
Causal classification aims to minimize the classification risk between the optimal

treatment regime (OTR) and its predicted value.
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(CATE) only describes the treatment effects on sub-populations. As

a coarser-grained estimand identified via the marginal distribution

of potential outcomes, CATE cannot identify treatment responders.

To tackle the above issues, we aim to accurately identify these

treatment responders from a causal classification perspective. First,

for a classifier that uses covariates to predict whether an individ-

ual is a responder or not, we define a weighted misclassification

loss, where weights are used to trade-off between the false posi-

tives and false negatives. When estimating the probability that an

individual is a responder given the covariates, we relax the mono-

tonicity assumption made in previous work [18] that the individual

treatment effect is nonnegative, and this leads to the parameter

of interest being partially identifiable in our work, even when the

strong unconfoundedness assumption holds. Therefore, we theoret-

ically derive the sharp bounds (also known as the tightest possible

bounds) of the probability that an individual is a responder given

the covariates. Based on this, we derive a sharp upper bound on

the weighted classification risk to measure the worst classification

performance of the classifier. In particular, the sharp upper bound

can be decomposed into two terms: the first term (called surrogate

risk) relies on both the causal classifier and the potential outcome

regressors, while the second term (called weighted risk) relies only

on the potential outcome regressors. We show that the classifica-

tion risk of the classifier learned by minimizing the proposed sharp

upper bound converges to the optimal classification risk.

By utilizing the above theoretical results, we further propose

a Classifying Treatment Responder Learning algorithm, namely

CTRL, to accurately identify the treatment responders. Specifi-

cally, CTRL extends previous representation learning methods to

include both counterfactual regression networks and responder

classification network, which are built on a shared representation

network to alleviate the confounding effect. In addition, we theo-

retically demonstrate the superiority of jointly learning counterfac-

tual regression networks and responder classification network for

minimizing the classification risk compared to the two-stage learn-

ing, which first pre-trains the counterfactual regression networks,

then trains the responder classification network. We also empiri-

cally demonstrate that our method can better predict the treatment

responder as well as adaptively trade-off the false-positives and

false-negatives on both the synthetic and real-world datasets.

Our main contributions are summarized as follows:

• We address the treatment responder classification problem with-

out assuming the monotonicity assumption, and derive the sharp

bounds of the probability that an individual is a responder.

• We derive a sharp upper bound on the weighted classification

risk to measure the worst classification performance and prove

that the classification risk of the classifier learned by minimiz-

ing the proposed sharp upper bound converges to the optimal

classification risk via generalization theory.

• We further propose a joint learning algorithm for classifying the

treatment responders, named CTLR, and theoretically demon-

strate the superiority of jointly learning over two-stage learning.

• We conduct extensive experiments on two real-world datasets

and one semi-synthetic dataset, and the results demonstrate the

superiority of our joint learning approach in classifying the treat-

ment responders under varying misclassification weights.

2 Related Work

Causal Effect Estimation. In conventional causal methods, most

previous works focus on predicting counterfactual outcomes and

then making a comparison to identify the optimal treatment. To mit-

igate confounding bias arising from imbalanced data, researchers

have developed a variety of methods, including those based on

propensity scores, tree models, representation balancing, and gen-

erative models. Propensity score-based methods estimate the treat-

ment probability conditional on covariates to adjust for confound-

ing by matching[6], stratification[14], or doubly-robust learning[3].

Tree-based methods [36] usually build numerous causal trees to

estimate heterogeneous treatment effects. Recently, Johansson et al.

[17], Shalit et al. [30] proposed learning balanced representation to

minimize confounding bias. Building upon this, Hassanpour and

Greiner [11] proposed disentangled representations for counterFac-

tual regression, while Zhong et al. [42] extended these methods to

cover entire space counterfactual regression, aiming to enhance

the precision and applicability of causal inference techniques. Fur-

ther, Wang et al. [37] introduced an innovative approach to optimal

transport in causality, adding a relaxed mass-preserving regularizer

to refine the handling of mini-batch sampling effects. Generative

methods include CEVAE [23] using variational autoencoders for

hidden confounders, TEDVAE [41] inferring and disentangling la-

tent variables, and GANITE [40] directly generating counterfactual

outcomes. Although these methods have achieved significant suc-

cess in estimating treatment effects, recent works have highlighted

that accurate causal effect estimation does not necessarily translate

into precise causal decision-making [9]. Unlike the above studies fo-

cusing on the causal effect estimation, our work aims to classifying

treatment responders under partial identification.

Causal Classification. Causal classification aims to find the opti-

mal treatment level (or action) that maximizes the expected value

of the outcome of interest given the covariates [10], and is crucial

in areas such as healthcare [12], marketing [16], and reinforcement

learning [32]. For classifying treatment responders, Kallus [18] as-

sumed the causal effect monotonicity to identify the responder

probability. Fernández-Loría and Loría [10] proposed causal scor-

ing, as a framework for treatment effect estimation, effect ordering,

and effect classification. Fernández-Loría and Provost [8] present

a theoretical analysis comparing treatment effect estimation and

outcome prediction when addressing causal classification. Another

task closely related to treatment responder classification in this

paper is the contextual multiarmed bandit (MAB), which consists

of estimating the arm (treatment level) with the largest reward (po-

tential outcome) given some context (feature vector). As one of the

online learning setting, the policy repeatedly observes a context,

takes an action, and then observes a reward only for the chosen

action [22]. Many methods have been proposed to maximize the cu-

mulative reward, including regression based [5], reweighted based

[20, 34, 35], and doubly robust methods [2, 7, 33, 38]. However, an

important distinction with respect to our setting is that the goal

in bandit problems is to learn a classification model while actively

making treatment assignment decisions for incoming subjects. In

this paper, we extend Kallus [18] to consider treatment respon-

der classification without the monotonicity assumption, leading to

partial identified causal parameters of interest.
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Table 1: The units are divided into four types according to

𝑌 (−1) and 𝑌 (+1), named "responder", "type-1 non-responder",

"type-2 non-responder", and "type-3 non-responder". Real

Treatment Effect (RTE) is defined as 𝐴 = (𝑌 (+1) − 𝑌 (−1))/2.

Unit type 𝑌 (−1) 𝑌 (+1) 𝑅 (OTR) 𝜏 (CATE)

Responder −1 +1 +1 +2
Type-1 non-responder −1 −1 −1 0

Type-2 non-responder +1 +1 −1 0

Type-3 non-responder +1 −1 −1 −2

In this paper, we extend the work of Kallus [18] to treatment

responder classification without the monotonicity assumption, de-

riving a sharp upper bound on classification risk and proposing a

joint learning algorithm to minimize it. Our CTRL method differs

from previous approaches in several key ways: Fernández-Loría

and Provost [8] analyzed the bias-variance tradeoff in causal classi-

fication but noted direct outcome prediction cannot identify respon-

ders; Fernández-Loría and Provost [9] distinguished between causal

decision-making (CDM) and causal effect estimation (CEE), with-

out providing a unified framework for CDM; Fernández-Loría and

Loría [10] introduced causal scoring but did not address misclassi-

fication risks or treatment responder classification; and Kallus [19]

focused on average hinge effect estimation, rather than CDM. In

contrast, our method directly optimizes classification risk through

joint learning, allowing tasks to exchange information and improve

representations. We show in Proposition 5.1 that CTRL outperforms

two-phase learning, and with infinite data, it reduces misclassifica-

tion risk by pushing the classifier away from decision boundaries.

3 Problem Setup

In this paper, we consider the case of binary treatment. Suppose a

simple random sampling of 𝑛 units from a super population P, for
each unit 𝑖 , the covariate and the assigned treatment are denoted

as 𝑋𝑖 ∈ R𝑚 and 𝑇𝑖 ∈ {−1, +1}, respectively, where 𝑇𝑖 = +1 means

receiving treatment, while 𝑇𝑖 = −1 means not receiving treatment.

Let 𝑌𝑖 ∈ {−1, +1} be the corresponding binary outcome. Without

loss of generality, we assume that the larger outcome is preferable.

To study the treatment responder classification, we adopt the po-

tential outcome framework [26, 28] in causal inference. Specifically,

let 𝑌𝑖 (−1) and 𝑌𝑖 (+1) be the outcome of unit 𝑖 had this unit receive

treatment 𝑇𝑖 = −1 and 𝑇𝑖 = +1, respectively. Since each unit can

be only assigned with one treatment, we always observe the corre-

sponding outcome be either𝑌𝑖 (−1) or𝑌𝑖 (+1), but not both, which is
also known as the fundamental problem of causal inference [15, 25].

We assume that the observation for unit 𝑖 is 𝑌𝑖 = 𝑌𝑖 (𝑇𝑖 ). In
other words, the observed outcome is the potential outcome cor-

responding to the assigned treatment, which also known as the

consistency assumption in the causal literature. We assume that

the stable unit treatment value assumption (STUVA) assumption

holds, i.e., there should not be alternative forms of the treatment

and interference between units. Furthermore, we follow [18] and

[8] to assume that the strong ignorability assumption holds, i.e.,

𝑌 (−1), 𝑌 (+1) ⊥⊥ 𝑇 | 𝑋 and let 𝜂 < P(𝑇𝑖 = +1|𝑋𝑖 = 𝑥) < 1 − 𝜂,

where 𝜂 is a constant between 0 and 1/2. The key notations used

in this paper are summarized in Table 4.

As shown in Table 1, we define real treatment effect (RTE) as

𝐴 = (𝑌 (+1) − 𝑌 (−1))/2 and divide units into four types accord-

ing to the joint values of 𝑌 (−1) and 𝑌 (+1), in which the respon-

ders refer to those individuals for whom treatment would have

a positive effect. In addition to the responders, we have individ-

uals who would have a negative outcome even with treatment

(type-1 non-responders), individuals who would have a positive

outcomewith or without treatment (type-2 non-responders), and in-

dividuals for whom treatment would have a negative effect (type-3

non-responders). Denote the indicator of responder as

𝑅 =

{
+1 𝑌 (+1) > 𝑌 (−1) (responder)

−1 Otherwise (non-responder)

and the probability of a responder given the covariates as

𝜌 (𝑋 ) = P(𝑅 = +1 | 𝑋 ),

we now aim at learning a classifier 𝑓 : R𝑝 → {−1, +1} to predict

𝑅 from 𝑋 . For 𝜃 ∈ [0, 1], we define the weighted misclassification

loss of the treatment responder classifier as

𝐿𝜃 (𝑓 ) = 𝜃 · P(false positive) + (1 − 𝜃 ) · P(false negative)
= 𝜃 · P(𝑓 (𝑋 ) = +1, 𝑅 = −1) + (1 − 𝜃 ) · P(𝑓 (𝑋 ) = −1, 𝑅 = +1) .

4 Sharp Bounds on Classification Risk

To facilitate understanding of the gap between treatment effect

estimation and treatment responder classification, we begin with

the discussion on the relation between responder probability 𝜌 (𝑋 )
and the conditional average treatment effect (CATE) defined as

𝜏 (𝑋 ) = E[𝑌 (+1) − 𝑌 (−1) | 𝑋 ],

whichmeasures the the difference in the conditionalmean outcomes

between treatments given covariates.

Lemma 4.1 (Relation to CATE). 𝜌 (𝑋 ) = 𝜏 (𝑋 )
2
+ P(𝐴 = −1 | 𝑋 ).

For identifying 𝜌 (𝑋 ), Kallus [18] assumes the monotonicity as-

sumption that 𝑌 (+1) ≥ 𝑌 (−1), i.e., type-3 non-responders do not
exist. Then we have 𝜌 (𝑋 ) =

𝜏 (𝑋 )
2

as a special case because of

P(𝐴 = −1 | 𝑋 ) = 0. Below, we aim to identify the treatment respon-

ders without the monotonicity assumption, and one of the critical

challenges is, even with the strong unconfoundedness assumption,

we are still unable to directly identify the responder probability

𝜌 (𝑋 ) from observational data, which motivates us to derive its

sharp bounds (also known as the tightest possible bounds).

Lemma 4.2 (Sharp Bounds on Responders). The sharp lower
bound of responder probability 𝜌 (𝑋 ) is

𝜌 (𝑋 ) ≥ max

{
𝜏 (𝑋 )
2

, 0

}
;

The sharp upper bound of responder probability 𝜌 (𝑋 ) is

𝜌 (𝑋 ) ≤ min{1 − P(𝑌 (−1) = +1 | 𝑋 ), P(𝑌 (+1) = +1 | 𝑋 )}
= min{1 − P(𝑌 = +1 | 𝑋,𝑇 = −1), P(𝑌 = +1 | 𝑋,𝑇 = +1)}.
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Lemma 4.3 (Classification Risk). The classification risk is

𝐿𝜃 (𝑓 ) =
1

2

E[𝑓 (𝑋 ) (𝜃 − 𝜌 (𝑋 ))]︸                      ︷︷                      ︸
surrogate risk 𝐿′

𝜃
(𝑓 ,𝜌 )

+ 1
2

E[𝜃 + (1 − 2𝜃 )𝜌 (𝑋 )]︸                       ︷︷                       ︸
weighted risk 𝐿′

𝜃
(𝜌 )

.

Proof Sketch. By the law of iterated expectations, we have

𝐿𝜃 (𝑓 ) = 𝜃 · P(false positive) + (1 − 𝜃 ) · P(false negative)
= 𝜃 · E[I[𝑓 (𝑋 ) = +1]I[𝑅 = −1]] + (1 − 𝜃 ) · E[I[𝑓 (𝑋 ) = −1]I[𝑅 = +1]]

=
𝜃

2

· E[(1 + 𝑓 (𝑋 )) (1 − 𝜌 (𝑋 ))] + 1 − 𝜃
2

· E[(1 − 𝑓 (𝑋 ))𝜌 (𝑋 )]

=
1

2

· E[𝑓 (𝑋 ) (𝜃 (1 − 𝜌 (𝑋 )) − (1 − 𝜃 )𝜌 (𝑋 ))]

+ 1

2

· E[𝜃 (1 − 𝜌 (𝑋 )) + (1 − 𝜃 )𝜌 (𝑋 ))]

=
1

2

E[𝑓 (𝑋 ) (𝜃 − 𝜌 (𝑋 ))] + 1

2

E[𝜃 + (1 − 2𝜃 )𝜌 (𝑋 )],

which leads to the conclusion in Lemma 4.3. □

Lemma 4.3 indicates that the classification risk can be decom-

posed into two terms: the first term (called surrogate risk) relies

on both the causal classifier and the potential outcome regres-

sors, while the second term (called weighted risk) relies only on

the potential outcome regressors. From the first term, given the

true conditional probability 𝜌 (𝑋 ), the Bayes-optimal classifier is

𝑓 ∗
𝜃
(𝑋 ) = I[𝜌 (𝑋 ) − 𝜃 ]. Notably, without the monotonicity assump-

tion of the treatment effect, the responder probability 𝜌 (𝑋 ) is
unidentifiable.

By combining Lemmas 4.2 and 4.3, we obtain the sharp upper

bounds on the classification risk in below.

Theorem 4.4 (Sharp Bounds on Classification Risk). When
𝜃 ∈ [0, 1/2], we have the classification risk upper bounded by

𝐿𝜃 (𝑓 ) ≤
1

2

E[𝑓 (𝑋 ) (𝜃 −max

{
𝜏 (𝑋 )
2

, 0

}
)]︸                                    ︷︷                                    ︸

surrogate risk 𝐿′
𝜃
(𝑓 ,𝜏 )

+ 1

2

E[𝜃 + (1 − 2𝜃 )min{1 − P(𝑌 (−1) = +1 | 𝑋 ), P(𝑌 (+1) = +1 | 𝑋 )}]︸                                                                                    ︷︷                                                                                    ︸
weighted risk 𝐿′

𝜃≤1/2 (𝜇−1,𝜇+1 )

;

When 𝜃 ∈ [1/2, 1], we have the classification risk upper bounded by

𝐿𝜃 (𝑓 ) ≤
1

2

E[𝑓 (𝑋 ) (𝜃 −max

{
𝜏 (𝑋 )
2

, 0

}
)]︸                                    ︷︷                                    ︸

surrogate risk 𝐿′
𝜃
(𝑓 ,𝜏 )

+ 1

2

E[𝜃 + (1 − 2𝜃 )max

{
𝜏 (𝑋 )
2

, 0

}
]︸                                     ︷︷                                     ︸

weighted risk 𝐿′
𝜃>1/2 (𝜇−1,𝜇+1 )

The above sharp upper bounds on the weighted classification

risk provide an effective measurement of the worst classification

performance of predicting the treatment responders, then the treat-

ment responder classifier is trained by minimizing the sharp upper

bounds. Finally, we derive the generalization bound as follows.

Definition 4.5 (Empirical Rademacher complexity). Let F be a

family of functions mapping from 𝑥 to {−1, +1} and 𝑆 = (𝑥1, . . . , 𝑥𝑛)
a fixed sample of size 𝑛 with elements in 𝑥 . Then, the empirical

Rademacher complexity of F with respect to the sample 𝑆 is

ℜ(F ) = E
𝝈

[
sup

𝑓 ∈F

1

𝑛

𝑛∑︁
𝑖=1

𝜎𝑖 𝑓 (𝑥𝑖 )
]
,

where 𝝈 = (𝜎1, . . . , 𝜎𝑛)⊤, with 𝜎𝑖s independent uniform random

variables taking values in {−1, +1}. The random variables 𝜎𝑖 are

called Rademacher variables.

Theorem 4.6 (Generalization Bound). With probability at
least 1 − 𝛿 , we have

𝐿𝜃 ( ˆ𝑓 ) ≤min

𝑓 ∈F
𝐿𝜃 (𝑓 ) + 2max{𝜃, 𝜃 −max

𝑋
{𝜏 (𝑋 )}}ℜ(F )

+ 5max{𝜃, 𝜃 −max

𝑋
{𝜏 (𝑋 )}}

√︂
2 ln(8/𝛿)

𝑛
.

Remarkably, the last two terms will vanish as the sample size

tends to infinity, which shows that the classification risk of the

classifier learned by minimizing the proposed sharp upper bound

converges to the optimal classification risk. All proofs of theorems

and lemmas are deferred to Appendix C.

5 CTRL: Classifying Treatment Responder

Learning Algorithm

Guided by the above preliminary theorems, we propose a Classify-

ing Treatment Responder Learning algorithm, namely CTRL, to per-

form counterfactual regression and causal decision-making. CTRL

seeks to improve how we identify individuals who will respond pos-

itively to treatments, enhancing the precision and effectiveness of

causal interventions. Specifically, the overall architecture of CTRL

consists of the following components:

• Shared representation network Φ(𝑋 ) for learning balanced
representation that benefits multiple tasks simultaneously;

• Counterfactual regression networksℎ−1 (Φ(𝑋 )) andℎ+1 (Φ(𝑋 ))
for estimating P(𝑌 (−1) = +1 | 𝑋 ) and P(𝑌 (+1) = +1 | 𝑋 );
• Responder Classifier 𝑓 (𝑋 ) = Sign(ℎ𝑓 (Φ(𝑋 ))) for distin-

guishing whether an individual is a responder.

Below, we first show that the classification risk for a responder

classifier trained via joint learning is lower than that trained via

two-phase learning. Then, we explain how to optimize ℎ−1 (Φ(𝑋 )),
ℎ+1 (Φ(𝑋 )) and ℎ𝑓 (Φ(𝑋 )) by minimizing the proposed losses.

5.1 Joint Learning for Lower Classification Risk

The objective of CTRL is to minimize the classification risk 𝐿𝜃 (𝑓 ) of
the responder classifier 𝑓 (𝑋 ) with the weight 𝜃 . Remarkably, in the

proposed CTRL, we prefer "joint learning" of 𝜏 and 𝑓 , rather than

"two-phase learning" (first 𝜏 , then 𝑓 ). Here, 𝜏 (𝑋 ) = ℎ+1 (Φ(𝑋 )) −
ℎ−1 (Φ(𝑋 )) represents the treatment effect, and the classification

risk of the responder classifier is reduced through joint learning

compared to two-phase learning.

Two-phase learning: first, learn 𝜏 by the existing CATE estimation

method; then, learn 𝑓 by minimizing the surrogate risk (1st)

ˆ𝑓 𝑇𝑃 = arg min

𝑓 ∈F
E[𝑓 (𝑋 ) (𝜃 −max

{
𝜏 (𝑋 )
2

, 0

}
)],
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Algorithm 1: Alternating Training for Joint Learning.

Input: Factual samples (𝑥1, 𝑡1, 𝑦1), . . . , (𝑥𝑛, 𝑡𝑛, 𝑦𝑛), 𝜆 > 0,

classification network ℎU with initial weights U,
outcome network ℎV with initial weights V,
representation network ΦW with initial weightsW.

1 while stopping criteria is not satisfied do

2 for number of steps for training classification network do

3 Sample a mini-batch {𝑖1, 𝑖2, . . . , 𝑖𝑚} ⊂ {1, 2, . . . , 𝑛};
4 [U,W] ← [U,W] − 𝜂∇U,WL𝜃 (ℎU, ℎV,ΦW);
5 end

6 for number of steps for training outcome network do

7 Sample a mini-batch { 𝑗1, 𝑗2, . . . , 𝑗𝑚} ⊂ {1, 2, . . . , 𝑛};
8 [V,W] ← [V,W] − 𝜆𝜂∇V,WL𝐶𝐹𝑅 (ℎV,ΦW);
9 if 𝜃 ≤ 1/2 then
10 [V,W] ← [V,W] − 𝜂∇V,WL𝜃≤1/2 (ℎV,ΦW);
11 else

12 [V,W] ← [V,W] − 𝜂∇V,WL𝜃>1/2 (ℎV,ΦW);
13 end

14 end

15 end

Joint learning: learn 𝑓 by minimizing both of the risks

( ˆ𝑓 𝐽 𝐿, 𝜇 𝐽 𝐿−1, 𝜇
𝐽 𝐿
+1 ) = arg min

𝑓 ,𝜇−1,𝜇+1
E[𝑓 (𝑋 ) (𝜃 −max

{
𝜏 (𝑋 )
2

, 0

}
)]

+ I(𝜃 > 1/2)𝐿′
𝜃>1/2 (𝜇−1, 𝜇+1) + I(𝜃 ≤ 1/2)𝐿′

𝜃≤1/2 (𝜇−1, 𝜇+1) .

Proposition 5.1. The classification risk of the responder classifier
trained via joint learning is lower than that via two-phase learning

𝐿𝜃 ( ˆ𝑓 𝐽 𝐿) ≤ 𝐿𝜃 ( ˆ𝑓 𝑇𝑃 ) .

Proposition 5.1 highlights the superiority of joint learning over

two-phase learning in minimizing the classification risk of the

responder classifier within the CTRL framework. By integrating

the estimation of 𝜏 and the optimization of 𝑓 into a cohesive learning

process, joint learning not only simplifies the methodology but also

improves the efficacy of the classification risk reduction.

5.2 Optimizing with the Proposed Loss Function

Based on the above theoretical findings, CTRL introduces three dis-

tinct loss functions to alternately optimize ℎ−1 (Φ(𝑋 )), ℎ+1 (Φ(𝑋 )),
and ℎ𝑓 (Φ(𝑋 )) using joint learning.
(I) Classifier learning loss function L𝜃 (ℎ𝑓 , ℎ−1, ℎ+1,Φ) is

1

𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖 ) (𝜃 −max{ℎ+1 (Φ(𝑥𝑖 )) − ℎ−1 (Φ(𝑥𝑖 )), 0}) .

By minimizing the term L𝜃 (ℎ𝑓 , ℎ−1, ℎ+1,Φ), our model ensures

𝑓 (𝑥𝑖 ) becomes an accurate classifier. When 𝜃 > ℎ+1 (Φ(𝑥𝑖 )) −
ℎ−1 (Φ(𝑥𝑖 )), indicating the risk coefficient exceeds the probability

of benefit, this term will push 𝑓 (𝑥𝑖 ) towards 0; conversely, it will
push it towards 1. Additionally, by alternately optimizingℎ𝑓 (Φ(𝑥𝑖 ))
and 𝜏 = ℎ+1 (Φ(𝑥𝑖 )) − ℎ−1 (Φ(𝑥𝑖 )), this approach helps us distance

𝜏 from the decision boundary 𝜃 .

(II) Classifier learning loss function L𝜃>1/2 (ℎ−1, ℎ+1,Φ) is

1

𝑛

𝑛∑︁
𝑖=1

(1 − 2𝜃 )max{ℎ+1 (Φ(𝑥𝑖 )) − ℎ−1 (Φ(𝑥𝑖 )), 0}.

When 𝜃 > 1/2, minimizing the term L𝜃>1/2 (ℎ−1, ℎ+1,Φ) indicates
a reduction in the probability of adopting treatment due to excessive

risk. The higher the risk coefficient 𝜃 , the more we aim to lower the

probability of treatment adoption, suggesting 𝜏 (𝑥𝑖 ) = ℎ+1 (Φ(𝑥𝑖 )) −
ℎ−1 (Φ(𝑥𝑖 )) should only be minimized when necessary.

Similarly, classifier learning loss function L𝜃≤1/2 (ℎ−1, ℎ+1,Φ) is

1

𝑛

𝑛∑︁
𝑖=1

(1 − 2𝜃 )min{1 − ℎ−1 (Φ(𝑥𝑖 )), ℎ+1 (Φ(𝑥𝑖 ))}.

When 𝜃 ≤ 1/2, minimizing the term L𝜃≤1/2 (ℎ−1, ℎ+1,Φ) means

either minimizing ℎ+1 (Φ(𝑥𝑖 )) or maximizing ℎ−1 (Φ(𝑥𝑖 )), which
also reduces 𝜏 = ℎ+1 (Φ(𝑥𝑖 )) − ℎ−1 (Φ(𝑥𝑖 )), thereby decreasing the

probability of treatment adoption. As 𝜃 increases, the penalty be-

comes more large, leading to a probability reduction in the adoption

of treatment.

(III) Counterfactual regression with balancing representation is

L𝐶𝐹𝑅 (ℎ−1, ℎ+1,Φ) =
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑖 · L(ℎ(Φ(𝑥𝑖 ), 𝑡𝑖 ), 𝑦𝑖 ) + Ω(ℎ)

+ 𝛼 · IPMG ({Φ(𝑥𝑖 )}𝑖:𝑡𝑖=0, {Φ(𝑥𝑖 )}𝑖:𝑡𝑖=1)

with𝑤𝑖 =
𝑡𝑖

2𝑢
+ 1 − 𝑡𝑖
2(1 − 𝑢) , where 𝑢 =

1

𝑛

𝑛∑︁
𝑖=1

𝑡𝑖 ,

and Ω is a model complexity term. In the CTRL framework, counter-

factual regression can be flexibly exploited from conventional causal

methods, and we take the widely used counterfactual regression

(CFR) [30], which uses Integral Probability Metric 𝐼𝑃𝑀𝐺 to measure

the discrepancy between the representation distributions of the

treated group and the control group. Consistent with CFR, in this pa-

per, we adopt theWasserstein measure as 𝐼𝑃𝑀𝐺 . By minimizing the

term 𝐼𝑃𝑀𝐺 , we obtain a shared representation that balances the con-

founding effect. Subsequently, minimizing L𝐶𝐹𝑅 (ℎ−1, ℎ+1,Φ) aids
in learning counterfactual estimators ℎ−1 (Φ(𝑋 )) and ℎ+1 (Φ(𝑋 ))
for estimating counterfactual outcomes 𝑌 (−1) and 𝑌 (+1).

Overall, the full objective loss function would be:

L 𝐽 𝐿

𝜃
(ℎ𝑓 , ℎ−1, ℎ+1,Φ) = L𝜃 (ℎ𝑓 , ℎ−1, ℎ+1,Φ) + 𝜆L𝐶𝐹𝑅 (ℎ−1, ℎ+1,Φ)

+ I(𝜃 ≤ 1/2)L𝜃≤1/2 (ℎ−1, ℎ+1,Φ) + I(𝜃 > 1/2)L𝜃>1/2 (ℎ−1, ℎ+1,Φ),

where 𝜆 is a hyper-parameter for trade-off the classification risk and

the accuracy of treatment effect estimation. Then, we adopt a joint

learning strategy to alternatively optimize the 𝑓 (𝑋 ) = ℎ𝑓 (Φ(𝑋 ))
and 𝜏 (𝑋 ). The details are shown in Algorithm 1. We generalize our

CTRL to non-binary treatments in Appendix D.

In the CTRL framework, we use CFRNet as the regression net-

work, with two fully-connected (FC) layers using ELU activation for

representation learning, two FC layers for predicting control and

treated outcomes, and two Tanh-activated layers for classification,

with softmax output. Each layer has 16 hidden units. The model

is trained for 2000 iterations with a learning rate of 0.001, using

the Adam optimizer and a batch size of 1000. The 𝜆 is set to 1. The

codes are available at: https://github.com/anpwu/CTRL.

https://github.com/anpwu/CTRL
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Table 2: Results (mean±std) of FPR, FNR, Risk and Rel. Err. on Toy Dataset with 𝜃 = 0.4

Within-samples on Toy with 𝜃 = 0.4 Out-of-samples on Toy with 𝜃 = 0.4

FPR ↓ FNR ↓ Risk ↓ Rel. Err. ↓ FPR ↓ FNR ↓ Risk ↓ Rel. Err. ↓

S-learner 0.226 ± 0.023 0.248 ± 0.013 0.239 ± 0.004 104.3% 0.226 ± 0.027 0.250 ± 0.018 0.240 ± 0.001 101.7%

T-learner 0.137 ± 0.018 0.111 ± 0.019 0.121 ± 0.008 3.4% 0.188 ± 0.022 0.163 ± 0.018 0.173 ± 0.005 45.4%

X-learner 0.149 ± 0.017 0.124 ± 0.013 0.134 ± 0.004 14.5% 0.183 ± 0.020 0.160 ± 0.016 0.169 ± 0.005 42.0%

R-learner 0.141 ± 0.057 0.186 ± 0.078 0.168 ± 0.026 43.6% 0.162 ± 0.066 0.216 ± 0.076 0.195 ± 0.021 63.9%

DR-learner 0.142 ± 0.010 0.110 ± 0.010 0.122 ± 0.004 4.3% 0.179 ± 0.020 0.168 ± 0.019 0.172 ± 0.004 44.5%

CF 0.191 ± 0.044 0.270 ± 0.023 0.238 ± 0.005 103.4% 0.191 ± 0.046 0.273 ± 0.032 0.240 ± 0.002 101.7%

DRORF 0.209 ± 0.019 0.259 ± 0.014 0.239 ± 0.004 104.3% 0.204 ± 0.021 0.264 ± 0.014 0.240 ± 0.002 101.7%

DMLORF 0.225 ± 0.023 0.249 ± 0.014 0.239 ± 0.004 104.3% 0.215 ± 0.026 0.257 ± 0.018 0.240 ± 0.002 101.7%

CFRNet 0.159 ± 0.025 0.144 ± 0.026 0.150 ± 0.016 28.2% 0.171 ± 0.027 0.154 ± 0.028 0.161 ± 0.014 35.2%

DeRCFR 0.170 ± 0.070 0.118 ± 0.059 0.139 ± 0.014 18.8% 0.181 ± 0.072 0.126 ± 0.061 0.148 ± 0.015 24.4%

ESCFR 0.418 ± 0.042 0.034 ± 0.009 0.188 ± 0.015 60.7% 0.428 ± 0.035 0.041 ± 0.010 0.196 ± 0.012 64.7%

CEVAE 0.346 ± 0.034 0.071 ± 0.015 0.181 ± 0.006 54.7% 0.347 ± 0.046 0.080 ± 0.020 0.187 ± 0.007 57.1%

DragonNet 0.148 ± 0.025 0.128 ± 0.017 0.136 ± 0.005 16.2% 0.160 ± 0.018 0.138 ± 0.018 0.147 ± 0.005 23.5%

DESCN 0.275 ± 0.076 0.054 ± 0.023 0.142 ± 0.019 21.4% 0.318 ± 0.053 0.060 ± 0.020 0.164 ± 0.014 37.8%

w/o 𝐿′
𝜃
(𝑓 , 𝜏 ) 0.164 ± 0.030 0.117 ± 0.019 0.136 ± 0.011 16.2% 0.181 ± 0.029 0.138 ± 0.021 0.155 ± 0.006 30.3%

w/o 𝐿′
𝜃
(𝜇−1, 𝜇+1 ) 0.150 ± 0.023 0.137 ± 0.026 0.142 ± 0.016 21.4% 0.159 ± 0.025 0.145 ± 0.028 0.151 ± 0.016 26.9%

CTRL 0.143 ± 0.017 0.123 ± 0.007 0.131 ± 0.007 12.0% 0.156 ± 0.018 0.126 ± 0.010 0.138 ± 0.004 16.0%

Oracle 0.164 ± 0.008 0.086 ± 0.007 0.117 ± 0.004 - 0.167 ± 0.005 0.087 ± 0.004 0.119 ± 0.003 -

6 Empirical Experiments

6.1 Experiment Setup

Baselines. We evaluate the proposed CTRL method under the

causal classification task. We compare our method with meta-

learners (S-Learner, T-Learner, X-Learner, R-Learner, and DR-

Learner), and the followingmethods: (1) Causal Forest methods, i.e.,

CF [1], DRORF [27] and DMLORF [4], which use decision trees

to estimate treatment effects from observational data; (2) CFRNet

[17, 30],DeRCFR [39], and ESCFR [37], which learns balanced rep-

resentations for counterfactual regression; (3) CEVAE [24], which

employs variational inference to generate potential outcomes; (4)

DragonNet [31], which uses an adaptive neural network learn

propensity scores and counterfactual outcomes in an end-to-end

way; (5)DESCN [42] uses deep networks to model treatment effects

in the entire population space. Meanwhile, we consider two ablation

versions of the CTRL method as baselines: (1) a two-phase learning

paradigm that first pre-trains 𝜏 (𝑋 ) using CFR loss and then trains

the classifier 𝑓 (·) using 𝐿′
𝜃
(𝑓 , 𝜏), denoted as w/o 𝐿′

𝜃
(𝜇−1, 𝜇+1); (2)

Classifying using 𝜏 learned by 𝐿′
𝜃
(𝜇−1, 𝜇+1) and CFR loss, denoted

as w/o 𝐿′
𝜃
(𝑓 , 𝜏). Additionally, we consider the method that uses the

ground truth probability of being a responder P(𝑅 = 1) to make

classification as Oracle.

Evaluation Metrics. We utilize three metrics for evaluation. First,

we use the False Positive Rate (FPR) to reflect the proportion of

negative instances incorrectly predicted as positive, and the False

Negative Rate (FNR) to indicate the proportion of positive instances

which the model fails to identify. Additionally, we calculate the

weighted risk based on the weight parameter 𝜃 , i.e., Risk(𝜽 ) =
FPR∗𝜃+FNR∗(1−𝜃 ) to evaluate the overall quality of a classification
method and report the risk relative error (Rel. Err.) to evaluate the

difference between the method and the Oracle one. The Rel. Err. is

calculate as follows: |Risk
method

− Risk
oracle

|/Risk
oracle

.

6.2 Synthetic Experiment

Simulation Procedure. In the simulations (Toys), we first gen-

erate 𝑑𝑋 -covariates from 𝑋 ∼ N(0𝑑𝑥 , Σ𝑑𝑥 ), where 0𝑑𝑥 represents

𝑚𝑋 -dimensional zero vectors, and Σ𝑑𝑥 is a covariance matrix with

diagonal elements equal to 1 and off-diagonal elements (covari-

ances) equal to 0.3. The observed treatments are sampled from a

Bernoulli distribution where with probability P(𝑇 | 𝑋 ), 𝑇 = +1,
and with probability 1 − P(𝑇 | 𝑋 ), 𝑇 = −1, where P(𝑇 | 𝑋 ) =
sigmoid(∑𝑑𝑥

𝑖=1
𝜓𝑇
𝑖
[𝑋𝑖 + (𝑋𝑖 + 𝑋𝑖−1)2/𝑑𝑥 ]) with 𝜓𝑇𝑖 ∼ Unif(−1, 1).

Then, we generate the potential outcomes 𝑌 (−1) and 𝑌 (+1) from
the joint probability P(𝑌 (−1) = −1, 𝑌 (+1) = +1) = 𝑝1 (𝑋 ) ∗ 𝑝2 (𝑋 ),
P(𝑌 (−1) = +1, 𝑌 (+1) = −1) = 𝑝1 (𝑋 ) ∗ (1 − 𝑝2 (𝑋 )), P(𝑌 (−1) =
+1, 𝑌 (+1) = +1) = (1 − 𝑝1 (𝑋 )) ∗ 𝑝3 (𝑋 ), P(𝑌 (−1) = −1, 𝑌 (+1) =
−1) = (1−𝑝1 (𝑋 ))∗(1−𝑝3 (𝑋 )), where 𝑝 𝑗 (𝑋 ) = sigmoid(∑𝑑𝑥

𝑖=1
𝜙
𝑗
𝑖
[𝑋𝑖+

(𝑋𝑖 + 𝑋𝑖−1)2/𝑑𝑥 ] + 𝑎 𝑗 ) with 𝜙 𝑗
𝑖
∼ Unif(−1, 1) and default 𝑎1 =

0.5, 𝑎2 = 2.4, 𝑎3 = 0.0. Notably, we can change Type-3 non-responder

ratiosP(𝑌 (−1) = +1, 𝑌 (+1) = −1) by varying𝑎2 ∈ {0.0, 0.8, 1.5, 2.4, 3.5}.
In this paper, we use 𝑎2 = 2.4 to generate 10% Type-3 non-responder.

Therefore, observed outcomes correspond to 𝑌 (𝑇 ) for the observed
𝑇 , and the responders are from P(𝑅 = 1) = 𝑝1 (𝑋 ) ∗𝑝2 (𝑋 ). Then, we
generate 2000/500/5000 samples as training, validation, and testing

data. We conduct 10 replications and report the mean and standard

deviation of results.

Performance Comparison. To verify the validity of our method,

we conducted experiments for weight 𝜃 ∈ {0.4, 0.5, 0.6} and the

results are shown in Tables 2 and 5. First, our method stably outper-

forms CFRNet in both within-sample and out-of-sample scenarios,

which proves the superiority of our method. Second, we find that

the two-stage learningmethodw/o 𝐿′
𝜃
(𝜇−1, 𝜇+1) stably outperforms

CFRNet. The w/o 𝐿′
𝜃
(𝜇−1, 𝜇+1) method first uses CFRNet loss to

pretrain the causal effect estimation model to get the same 𝜏 as CFR-

Net and frozen it, and then use 𝐿′
𝜃
(𝑓 , 𝜏) loss to train a classifier 𝑓 (·)
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Figure 1: The Risk performance under varying degree of the non-monotonicity with 𝜃 = 0.4, 0.5 and 0.6, respectively.

Figure 2: The classification performance with varying feature dimension under the weight 𝜃 = 0.4.

Figure 3: The classification performance under varying hyper-parameter 𝜆 with weight 𝜃 = 0.4.

to make classification. The competitive performance can be attrib-

uted to the validity of the proposed 𝐿′
𝜃
(𝑓 , 𝜏) loss. Meanwhile, w/o

𝐿′
𝜃
(𝑓 , 𝜏) also stably outperforms CFRNet in both scenario. which

is a two-stage learning using CFR loss and D loss for causal ef-

fect estimation model training and then using 𝜏 for classification,

which empirically provides that 𝐿′
𝜃
(𝜇−1, 𝜇+1) loss helps in causal

classification task. See Appendix for more results with varying 𝜃 .

In-Depth Analysis. To verify the effectiveness of our method, we

conduct experiments with different degrees of non-monotonicity,

sample sizes and data complexity with different weight 𝜃 on syn-

thetic data. Figure 1 shows the Risk performance under varying

degree of the non-monotonicity. First, our method is the closest one

to oracle in terms of Risk, which further verifies the effectiveness

of our method. Second, as the type-3 non-responder ratio increases,

the Risk of all methods has a tendency to increase first and then

decrease, which is because a small amount of type-3 non-responder

will make the causal effect estimation becoming smaller, leading

to some positive sample on the classification boundary cannot be

recognized. Meanwhile, when there exists a large amount of type-3

non-responder, since the causal effect estimate is already small at

this time, some negative samples will be difficult to be misclassified

as positive sample, resulting in a smaller FNR and a lower Risk.

Additionally, we find that as weight 𝜃 increases, i.e., the weight of

FNR increases, Risk decreases more significantly in the presence of

a large number of type-3 non-responder, which further validates the

rationality of this phenomenon. Figure 2 shows the classification

performance with varying dimensions. Our method stably outper-

forms the baselines, which shows the robustness of our method.

See Appendix for the results across varying sample sizes.

Sensitivity Analysis. The hyperparameter 𝜆 before the CFR loss

L𝐶𝐹𝑅 plays a very important role in the training phase. In order to

explore under which lambda our method has the best classification

performance, we constructed sensitivity analysis experiments and

the results are shown in Figure 3. As 𝜆 increases, the Risk of our

method first decreases and then increases. This is because when 𝜆

is small, the causal effect estimation 𝜏 is not learned accurately due

to the low weight of the CFR loss, which makes the coefficients of

𝑓 in 𝐿′
𝜃
(𝑓 , 𝜏) inaccurate, leading to learning a sub-optimal classifier.
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Table 3: Results (mean±std) of FPR, FNR, Risk and Rel. Err. on IHDP/Jobs Dataset with 𝜃 = 0.4

Within-samples on IHDP with 𝜃 = 0.4 Out-of-samples on IHDP with 𝜃 = 0.4

FPR ↓ FNR ↓ Risk ↓ Rel. Err. ↓ FPR ↓ FNR ↓ Risk ↓ Rel. Err. ↓

S_learner 0.282 ± 0.023 0.219 ± 0.022 0.244 ± 0.004 130% 0.292 ± 0.051 0.210 ± 0.049 0.243 ± 0.010 111%

T_learner 0.151 ± 0.045 0.084 ± 0.024 0.111 ± 0.017 4.7% 0.195 ± 0.062 0.117 ± 0.048 0.148 ± 0.030 28.7%

X_learner 0.169 ± 0.046 0.101 ± 0.024 0.128 ± 0.014 20.8% 0.204 ± 0.066 0.117 ± 0.041 0.152 ± 0.023 32.2%

R_learner 0.255 ± 0.041 0.095 ± 0.041 0.159 ± 0.020 50.0% 0.299 ± 0.082 0.108 ± 0.026 0.184 ± 0.029 60.0%

DR_learner 0.167 ± 0.049 0.092 ± 0.019 0.122 ± 0.018 15.1% 0.212 ± 0.074 0.122 ± 0.039 0.158 ± 0.024 37.4%

CF 0.156 ± 0.273 0.262 ± 0.144 0.219 ± 0.024 106.6% 0.151 ± 0.267 0.237 ± 0.129 0.203 ± 0.038 76.5%

DRORF 0.276 ± 0.031 0.223 ± 0.028 0.244 ± 0.004 130.2% 0.287 ± 0.041 0.212 ± 0.042 0.242 ± 0.011 110.4%

DMLORF 0.290 ± 0.031 0.211 ± 0.028 0.243 ± 0.004 129.2% 0.306 ± 0.049 0.196 ± 0.048 0.240 ± 0.010 108.7%

CFRNet 0.198 ± 0.041 0.098 ± 0.032 0.138 ± 0.017 30.1% 0.243 ± 0.056 0.123 ± 0.027 0.171 ± 0.026 48.6%

DeRCFR 0.393 ± 0.163 0.029 ± 0.038 0.175 ± 0.043 65.1% 0.284 ± 0.223 0.113 ± 0.154 0.182 ± 0.046 58.3%

ESCFR 0.327 ± 0.071 0.024 ± 0.021 0.145 ± 0.017 36.8% 0.368 ± 0.116 0.037 ± 0.034 0.170 ± 0.031 47.8%

CEVAE 0.375 ± 0.142 0.109 ± 0.118 0.215 ± 0.016 102.8% 0.257 ± 0.184 0.180 ± 0.165 0.211 ± 0.034 83.5%

DragonNet 0.205 ± 0.067 0.087 ± 0.029 0.134 ± 0.018 26.4% 0.216 ± 0.079 0.096 ± 0.051 0.144 ± 0.020 25.2%

DESCN 0.311 ± 0.073 0.044 ± 0.032 0.151 ± 0.018 42.5% 0.299 ± 0.107 0.075 ± 0.058 0.165 ± 0.023 43.5%

w/o 𝐿′
𝜃
(𝑓 , 𝜏 ) 0.171 ± 0.048 0.099 ± 0.028 0.128 ± 0.018 20.8% 0.230 ± 0.055 0.137 ± 0.060 0.174 ± 0.026 51.3%

w/o 𝐿′
𝜃
(𝜇−1, 𝜇+1 ) 0.186 ± 0.039 0.089 ± 0.032 0.128 ± 0.017 20.8% 0.226 ± 0.066 0.107 ± 0.031 0.154 ± 0.034 33.9%

CTRL 0.213 ± 0.083 0.070 ± 0.040 0.127 ± 0.016 19.8% 0.241 ± 0.090 0.065 ± 0.057 0.135 ± 0.020 17.4%

Oracle 0.104 ± 0.009 0.119 ± 0.010 0.106 ± 0.004 - 0.119 ± 0.031 0.122 ± 0.019 0.115 ± 0.017 -

Within-samples on Jobs with 0.4 Out-of-samples on Jobs with 0.4

FPR ↓ FNR ↓ Risk ↓ Rel. Err. ↓ FPR ↓ FNR ↓ Risk ↓ Rel. Err. ↓

S_learner 0.296 ± 0.015 0.168 ± 0.034 0.220 ± 0.021 60.0% 0.295 ± 0.023 0.171 ± 0.031 0.221 ± 0.018 123%

T_learner 0.175 ± 0.033 0.068 ± 0.027 0.111 ± 0.021 5.7% 0.180 ± 0.041 0.076 ± 0.026 0.118 ± 0.028 19.2%

X_learner 0.176 ± 0.033 0.068 ± 0.027 0.112 ± 0.023 6.7% 0.182 ± 0.040 0.073 ± 0.031 0.116 ± 0.029 17.2%

R_learner 0.248 ± 0.062 0.053 ± 0.016 0.131 ± 0.022 24.7% 0.262 ± 0.057 0.067 ± 0.017 0.144 ± 0.023 45.5%

DR_learner 0.164 ± 0.026 0.079 ± 0.024 0.113 ± 0.019 7.6% 0.194 ± 0.034 0.117 ± 0.037 0.148 ± 0.030 49.5%

CF 0.129 ± 0.273 0.270 ± 0.145 0.214 ± 0.028 103.8% 0.147 ± 0.311 0.271 ± 0.148 0.222 ± 0.045 124.2%

DRORF 0.296 ± 0.017 0.167 ± 0.036 0.218 ± 0.020 107.6% 0.295 ± 0.021 0.169 ± 0.032 0.219 ± 0.018 121.2%

DMLORF 0.297 ± 0.015 0.165 ± 0.035 0.218 ± 0.020 107.6% 0.298 ± 0.022 0.166 ± 0.032 0.219 ± 0.018 121.2%

CFRNet 0.196 ± 0.043 0.072 ± 0.022 0.121 ± 0.023 15.2% 0.192 ± 0.055 0.072 ± 0.024 0.120 ± 0.028 21.2%

DeRCFR 0.228 ± 0.108 0.050 ± 0.037 0.121 ± 0.033 15.2% 0.230 ± 0.132 0.053 ± 0.041 0.124 ± 0.043 25.3%

ESCFR 0.266 ± 0.104 0.038 ± 0.025 0.129 ± 0.035 22.9% 0.282 ± 0.098 0.034 ± 0.018 0.133 ± 0.034 34.3%

CEVAE 0.227 ± 0.143 0.131 ± 0.199 0.170 ± 0.075 61.9% 0.231 ± 0.146 0.136 ± 0.211 0.174 ± 0.081 75.8%

DragonNet 0.182 ± 0.045 0.064 ± 0.032 0.111 ± 0.022 5.7% 0.183 ± 0.036 0.064 ± 0.033 0.112 ± 0.025 13.1%

DESCN 0.356 ± 0.075 0.009 ± 0.007 0.148 ± 0.029 41.0% 0.354 ± 0.081 0.006 ± 0.005 0.145 ± 0.032 46.5%

w/o 𝐿′
𝜃
(𝑓 , 𝜏 ) 0.189 ± 0.038 0.070 ± 0.019 0.117 ± 0.021 11.4% 0.180 ± 0.052 0.080 ± 0.029 0.120 ± 0.026 21.2%

w/o 𝐿′
𝜃
(𝜇−1, 𝜇+1 ) 0.182 ± 0.048 0.066 ± 0.023 0.112 ± 0.024 6.7% 0.178 ± 0.054 0.059 ± 0.026 0.110 ± 0.026 11.1%

CTRL 0.196 ± 0.060 0.055 ± 0.030 0.111 ± 0.026 5.7% 0.188 ± 0.073 0.053 ± 0.036 0.107 ± 0.029 8.1%

Oracle 0.172 ± 0.045 0.060 ± 0.021 0.105 ± 0.022 - 0.168 ± 0.054 0.052 ± 0.025 0.099 ± 0.024 -

When 𝜆 is large, although an accurate causal effect estimationmodel

can be learned, the low weight of 𝐿′
𝜃
(𝑓 , 𝜏) prevents the classifier

𝑓 from being adequately trained. To address this, we select the

hyperparameter 𝜆 by minimizing the bound on the classification

risk using validation data. In our experiments, we set 𝜆 = 1.

6.3 Real-World Experiment

Dataset and Prepossessing. Following previous studies [24, 30,

40], we conduct experiments on one semi-synthetic dataset, IHDP,

and one real-world dataset, Jobs. The IHDP dataset [13] is based on

the Infant Health andDevelopment Program (IHDP), which is aim to

examine the effects of specialist home visits on future cognitive test

scores. The dataset includes 747 units and 25 covariates measuring

aspects of children and their mothers. The Jobs dataset [21] is based

on the National Supported Work program to examine the effects

of job training on income and employment status after training,

which includes 3,212 units and 17 covariates. We follow Shalit

et al. [30] to split the data into training/validation/testing set with

ratios 63/27/10 for both the IHDP and Jobs datasets. We repeat

experiment 100 times for the IHDP and 10 times for Jobs.

We preprocessed the IHDP dataset as follows to obtain binary

outcomes: we treat the original covariates and treatments as 𝑋 and

𝑇 , use the original potential outcomes as𝑀0 and𝑀1. Then, define

𝑝0
𝑀

= sigmoid((𝑀0−E𝑀0) ∗2) and 𝑝1𝑀 = sigmoid((𝑀1−E𝑀1) ∗4),
we sample 𝑌 (−1) and 𝑌 (+1) from joint probability P(𝑌 (−1) =

−1, 𝑌 (+1) = +1) = 𝑝1
𝑀
, P(𝑌 (−1) = +1, 𝑌 (+1) = +1) = (1−𝑝1

𝑀
)∗𝑝0

𝑀
,

P(𝑌 (−1) = −1, 𝑌 (+1) = −1) = (1 − 𝑝1
𝑀
) ∗ (1 − 𝑝0

𝑀
). In addition,

since the Jobs dataset contains only observed outcomes and not

counterfactual outcomes, we only collect 17 covariates from the

original Jobs dataset and then simulate the observed treatment
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Figure 4: The out-of-sample results for IHDP dataset (above) and the Jobs dataset (below) with 𝜃 ∈ {0.5, 0.6}.

and outcomes using the same approach as in the simulation, with

𝑝2 (𝑋 ) = 0 kept constant (implying positive returns from training).

Performance Comparison. Tables 3 show the performance of

our method and the baseline for causal classification task on the

IHDP dataset and the Jobs dataset with 𝜃 = 0.4. First, DragonNet

achieves the most competitive performance across the baseline.

Second, our method stably outperforms the baseline method in

both within sample scenarios and out-of sample scenarios, which

further validates the effectiveness of our method. Third, method

w/o 𝐿′
𝜃
(𝜇−1, 𝜇+1) and method w/o 𝐿′

𝜃
(𝑓 , 𝜏) still stably outperform

the CFRNet method, which validates the effectiveness of two pro-

posed losses. The results presented in Tables 2 and 3 highlight

the significant advantages of our proposed algorithm: (1) In the

Toy data simulation with 𝜃 = 0.4, as shown in Table 2, our CTRL

method achieved reductions of 14.3% in Risk and 19.2% in Relative

Error compared to the traditional causal effect estimator CFRNet,

demonstrating superior out-of-sample performance. (2) In the IHDP

data with 𝜃 = 0.4, as shown in Table 3, our CTRL method reduced

Risk by 6.2% and Relative Error by 7.8% compared to the best base-

line, DragonNet, highlighting improved out-of-sample performance.

(3) In the Jobs data with 𝜃 = 0.4, as shown in Table 4, our CTRL

method achieved reductions of 4.5% in Risk and 5.0% in Relative

Error compared to DragonNet, showing significant out-of-sample

performance improvements. These improvements are substantial

in real-world applications, especially in high-risk projects such as

government financial policy or healthcare policy. Figure 4 shows

the performance of our method and the baseline method under

different weights 𝜃 , and similar results can be found that the risk of

our method remains the lowest and is still the closest to the Oracle.

6.4 Ablation Studies

We conducted comprehensive ablation studies to evaluate each

component of the CTRL estimator on Toy, IHDP, and Jobs datasets:

• Theorem 4.4 shows the classification risk is bounded by the

surrogate risk 𝐿′
𝜃
(𝑓 , 𝜏) and weighted risk 𝐿′

𝜃
(𝜇−1, 𝜇+1). We

incorporate them and CFR loss into the objective function.

• In our experiments, CFRNet is the foundationmodel of CTRL.

’w/o 𝐿′
𝜃
(𝑓 , 𝜏)’ denotes CTRLwithout surrogate risk, and ’w/o

𝐿′
𝜃
(𝜇−1, 𝜇+1)’ denotes CTRL without weighted risk. These

represent three ablation versions of our CTRL algorithm.

The results in Tables 2 & 3 and Figures 1, 2 & 4 demonstrate that

each component significantly reduces the weighted risk.

7 Conclusion

This paper studies the treatment responder classification problem

without assuming the monotonicity assumption. First, we derive

the sharp bounds of the probability that an individual is a responder,

as well as a sharp upper bound on the weighted classification risk

to measure the worst classification performance. Next, we theo-

retically prove that the classification risk of the classifier learned

by minimizing the proposed sharp upper bound converges to the

optimal classification risk via generalization theory. Then, a joint

learning algorithm for classifying the treatment responders is pro-

posed, named CTLR, and demonstrate the superiority of jointly

learning over two-stage learning. Finally, we conduct extensive

experiments on two real-world datasets and one semi-synthetic

dataset, and the results demonstrate the superiority of our joint

learning approach in classifying the treatment responders.
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Appendix

A Notations

In this section, we provide a summary of the key notation and their

descriptions, as shown in Table 4.

Table 4: Key notations used in this paper.

Notation Description

𝑋 Observed Covariate

𝑇 Observed Treatment

𝑌 Observed Outcome

𝑌 (−1) Potential Outcome under 𝑇 = −1
𝑌 (+1) Potential Outcome under 𝑇 = +1
𝜃 Risk Cost

𝑅 𝑅 = +1: Responder; 𝑅 = −1: Non-Responder.
𝜌 (𝑋 ) = P(𝑅 = +1 | 𝑋 ) The Probability of Becoming Responder

𝐴 = (𝑌 (+1) − 𝑌 (−1))/2 Real Treatment Effect

𝜏 (𝑋 ) = E[𝑌 (+1) − 𝑌 (−1) | 𝑋 ] Conditional Average Treatment Effect

𝐿𝜃 (𝑓 ) The Weighted Misclassification Loss

𝐿′
𝜃
(𝑓 , 𝜏) Surrogate Risk

𝐿′
𝜃
(𝜇−1, 𝜇+1) Weighted Risk

https://arxiv.org/abs/2206.12532
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Figure 5: The classification performance with varying sample sizes on Toy dataset with 𝜃 = 0.4.

Table 5: Results (mean±std) of FPR, FNR, Risk and Rel. Err. on Toy dataset with 𝜃 ∈ {0.5, 0.6}.

Out-of-samples on Toy with 𝜃 = 0.5 Out-of-samples on Toy with 𝜃 = 0.6

FPR ↓ FNR ↓ Risk ↓ Rel. Err. ↓ FPR ↓ FNR ↓ Risk ↓ Rel. Err. ↓
S-learner 0.159 ± 0.025 0.295 ± 0.017 0.227 ± 0.004 84.5% 0.101 ± 0.022 0.334 ± 0.015 0.194 ± 0.007 67.2%

T-learner 0.145 ± 0.014 0.198 ± 0.014 0.171 ± 0.004 39.0% 0.107 ± 0.010 0.232 ± 0.013 0.157 ± 0.004 35.3%

X-learner 0.137 ± 0.017 0.195 ± 0.017 0.166 ± 0.005 35.0% 0.099 ± 0.014 0.231 ± 0.017 0.152 ± 0.006 31.0%

DR-learner 0.132 ± 0.017 0.210 ± 0.020 0.171 ± 0.004 39.0% 0.095 ± 0.013 0.252 ± 0.021 0.157 ± 0.004 35.3%

R-learner 0.085 ± 0.058 0.287 ± 0.080 0.186 ± 0.014 51.2% 0.034 ± 0.044 0.346 ± 0.067 0.159 ± 0.005 37.1%

CF 0.083 ± 0.021 0.346 ± 0.016 0.214 ± 0.004 74.0% 0.017 ± 0.010 0.390 ± 0.010 0.166 ± 0.003 43.1%

DRORF 0.133 ± 0.017 0.312 ± 0.011 0.222 ± 0.004 80.5% 0.079 ± 0.013 0.348 ± 0.009 0.187 ± 0.005 61.2%

DMLORF 0.146 ± 0.022 0.303 ± 0.015 0.225 ± 0.004 82.9% 0.090 ± 0.018 0.341 ± 0.012 0.190 ± 0.007 63.8%

CFRNet 0.120 ± 0.028 0.208 ± 0.028 0.164 ± 0.010 33.3% 0.070 ± 0.032 0.285 ± 0.063 0.156 ± 0.010 34.4%

DeRCFR 0.115 ± 0.048 0.185 ± 0.066 0.150 ± 0.016 21.9% 0.053 ± 0.026 0.264 ± 0.054 0.137 ± 0.010 18.1%

ESCFR 0.000 ± 0.000 0.401 ± 0.006 0.201 ± 0.003 63.4% 0.000 ± 0.000 0.401 ± 0.006 0.160 ± 0.002 37.9%

CEVAE 0.133 ± 0.141 0.261 ± 0.145 0.197 ± 0.005 60.1% 0.000 ± 0.000 0.401 ± 0.006 0.160 ± 0.002 37.9%

DragonNet 0.107 ± 0.020 0.189 ± 0.024 0.148 ± 0.006 20.3% 0.061 ± 0.014 0.251 ± 0.022 0.137 ± 0.005 18.1%

DESCN 0.159 ± 0.140 0.207 ± 0.163 0.183 ± 0.016 48.8% 0.000 ± 0.000 0.401 ± 0.006 0.160 ± 0.002 37.9%

w/o 𝐿′
𝜃
(𝑓 , 𝜏) 0.134 ± 0.028 0.176 ± 0.023 0.155 ± 0.004 26.0% 0.124 ± 0.025 0.191 ± 0.022 0.151 ± 0.008 30.2%

w/o 𝐿′
𝜃
(𝜇−1, 𝜇+1) 0.102 ± 0.029 0.206 ± 0.025 0.154 ± 0.012 25.2% 0.041 ± 0.031 0.301 ± 0.073 0.145 ± 0.013 25.0%

CTRL 0.124 ± 0.009 0.154 ± 0.012 0.139 ± 0.004 13.0% 0.093 ± 0.017 0.191 ± 0.023 0.132 ± 0.004 13.8%

Oracle 0.114 ± 0.005 0.133 ± 0.003 0.123 ± 0.004 - 0.071 ± 0.004 0.185 ± 0.004 0.116 ± 0.003 -

B Supplementary Experiments

B.1 Scalability to Small Sample Sizes

Figure 5 illustrates the responder classification performance on

the Toy dataset with varying sample sizes under the cost 𝜃 = 0.4.

The results demonstrate that CTRL achieves stable and reliable

performance even with small sample sizes, highlighting its ability

to effectively leverage limited data. Specifically, at sample sizes of

500 and 1000, CTRL exhibits significantly lower risk compared to

CFRNet, showcasing its superiority and robustness.

B.2 Supplementary experiments on Toy dataset

across 𝜃 ∈ {0.5, 0.6}
We conduct additional experiments on the synthetic Toy dataset

with cost weights 𝜃 ∈ {0.5, 0.6}, as listed in Table 5. The results

demonstrate that CTRL consistently outperforms baseline meth-

ods, achieving lower risk and relative error across both 𝜃 values.

Notably, CTRL’s performance is comparable to the Oracle model,

underscoring its robustness, effectiveness, and ability to generalize

well under varying cost weights.

B.3 Computational Complexity Analysis

The experimental results demonstrate that incorporating a classifier

network and leveraging surrogate and weighted risks introduces

a linear increase in computational complexity. As shown in Ta-

ble 6, the CTRL model efficiently completes training on all three

datasets—Toys, IHDP, and Jobs—within 30 seconds. This highlights

its computational scalability while maintaining effective perfor-

mance across diverse datasets.

C Theoretical Proof

C.1 Proof of Lemma 1

According to the definition of 𝜏 (𝑋 ), we have:

𝜏 (𝑋 ) = E(𝑌 (+1) − 𝑌 (−1) | 𝑋 )

=
∑︁

𝑎,𝑏∈{−1,+1}
P(𝑌 (−1) = 𝑎,𝑌 (+1) = 𝑏 | 𝑋 ) · (𝑏 − 𝑎)

= 2P(𝑌 (−1) = −1, 𝑌 (+1) = +1 | 𝑋 )
− 2P(𝑌 (−1) = +1, 𝑌 (+1) = −1 | 𝑋 )

= 2𝜌 (𝑋 ) − 2P(𝐴 = −1 | 𝑋 )
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Table 6: Training time(s) of various methods in a single exe-

cution on different datasets.

Model Toys IHDP Jobs

CF 2.51 0.14 1.02

DRORF 102.46 35.14 113.07

DMLORF 72.63 18.2 71.69

CFRNet 3.21 2.84 3.20

DeRCFR 17.86 12.49 17.49

ESCFR 3.64 3.55 3.57

CEVAE 49.20 13.04 50.22

DragonNet 1.50 1.42 1.45

DESCN 2.06 2.04 1.98

CTRL 23.11 10.53 29.71

Rearranging the terms provides the desired formulation: 𝜌 (𝑋 ) =
𝜏 (𝑋 )
2
+ P(𝐴 = −1 | 𝑋 ).

C.2 Proof of Lemma 2

Given 𝜌 (𝑥) = 𝜏 (𝑋 )
2
+ P(𝐴 = −1 | 𝑋 ) ≥ 𝜏 (𝑋 )

2
and 𝜌 (𝑋 ) ≥ 0, we can

establish the sharp lower bound: 𝜌 (𝑋 ) ≥ max{ 𝜏 (𝑋 )
2
, 0}.

Given 𝑃 (𝑌 (−1) = −1 | 𝑋 ) = 𝜌 (𝑋 ) + 𝑃 (𝑌 (−1) = 𝑌 (+1) = −1 |
𝑋 ) ≥ 𝜌 (𝑋 ) and 𝑃 (𝑌 (+1) = +1 | 𝑋 ) = 𝜌 (𝑋 ) + 𝑃 (𝑌 (−1) = 𝑌 (+1) =
+1 | 𝑋 ) ≥ 𝜌 (𝑋 ), we can establish the sharp upper bound:𝜌 (𝑥) ≤
min{1 − P(𝑌 (−1) = +1 | 𝑋 ), P(𝑌 (+1) = +1 | 𝑋 )}.

C.3 Proof of Lemma 3

By the law of iterated expectations, we have

𝐿𝜃 (𝑓 ) = 𝜃 · P(false positive) + (1 − 𝜃 ) · P(false negative)
= 𝜃 · E[I[𝑓 (𝑋 ) = +1]I[𝑅 = −1]] + (1 − 𝜃 ) · E[I[𝑓 (𝑋 ) = −1]I[𝑅 = +1]]

=
𝜃

2

· E[(1 + 𝑓 (𝑋 )) (1 − 𝜌 (𝑋 ))] + 1 − 𝜃
2

· E[(1 − 𝑓 (𝑋 ))𝜌 (𝑋 )]

=
1

2

· E[𝑓 (𝑋 ) (𝜃 (1 − 𝜌 (𝑋 )) − (1 − 𝜃 )𝜌 (𝑋 ))]

+ 1

2

· E[𝜃 (1 − 𝜌 (𝑋 )) + (1 − 𝜃 )𝜌 (𝑋 ))]

=
1

2

E[𝑓 (𝑋 ) (𝜃 − 𝜌 (𝑋 ))] + 1

2

E[𝜃 + (1 − 2𝜃 )𝜌 (𝑋 )],

which leads to the conclusion in Lemma 4.3.

C.4 Proof of Theorem 2

In our derivation, 𝐿𝜃 (𝑓 ) is Lipschitz continuous with respect to

𝑓 (𝑋 ) with Lipschitz constant 𝑐 = max{𝜃, 𝜃 − max𝑋 {𝜏 (𝑋 )}}. By
Talagrand’s lemma, the upper bound of Rademacher complexity is

ℜ(𝐿𝜃 ◦ F ) ≤ 𝑐ℜ(F ). By Theorem 26.5(c) in Shalev-Shwartz and

Ben-David [29], with probability at least 1 − 𝛿 , we have the result:

𝐿𝜃 ( ˆ𝑓 ) ≤ min

𝑓 ∈F
𝐿𝜃 (𝑓 ) + 2max{𝜃, 𝜃 −max

𝑋
{𝜏 (𝑋 )}}ℜ(F )

+ 5max{𝜃, 𝜃 −max

𝑋
{𝜏 (𝑋 )}}

√︂
2 ln(8/𝛿)

𝑛
.

C.5 Proof of Proposition 1

Two-phase learning: first, learn 𝜏 by the existing CATE estimation

method; then, learn 𝑓 by minimizing the surrogate risk (1st)

ˆ𝑓 𝑇𝑃 = arg min

𝑓 ∈F
E[𝑓 (𝑋 ) (𝜃 −max

{
𝜏 (𝑋 )
2
, 0

}
)],

Joint learning: learn 𝑓 by minimizing both of the risks

( ˆ𝑓 𝐽 𝐿, 𝜇 𝐽 𝐿−1, 𝜇
𝐽 𝐿
+1 ) = arg min

𝑓 ,𝜇−1,𝜇+1
E[𝑓 (𝑋 ) (𝜃 −max

{
𝜏 (𝑋 )
2
, 0

}
)]

+ I(𝜃 > 1/2)𝐿′
𝜃>1/2 (𝜇−1, 𝜇+1) + I(𝜃 ≤ 1/2)𝐿′

𝜃≤1/2 (𝜇−1, 𝜇+1) .

For brevity, we denote the classification risk in Joint learning

as 𝐿( ˆ𝑓 , 𝜇−1, 𝜇+1). The intuition of Proposition 1 is that for any given
𝜇−1 and 𝜇+1 (so as for given𝜏 ), we havemin𝑓 ,𝜇−1,𝜇+1 𝐿(𝑓 , 𝜇−1, 𝜇+1) ≤
min𝑓 𝐿(𝑓 , 𝜇−1, 𝜇+1), thus the classification risk of joint learning is

not larger than that of two-phase learning.

D Generalize to Non-Binary Treatments

We now discuss how to generalize our results to non-binary treat-

ments. For multi-value treatments 𝑇 , we have the following obser-

vations in Table 7.

Table 7: The units are divided into 𝐾 + 1 types according to

𝑌 (𝑇 ),𝑇 ∈ {1, 2, ·, 𝐾}.

Unit Type 𝑌 (1) 𝑌 (2) · · · 𝑌 (𝐾 − 1) 𝑌 (𝐾) 𝐴 (RTE)

Type-1 responder +1 +1 · · · +1 +1 1

Type-2 responder 0 +1 · · · +1 +1 2

· · · · · · · · ·
Type-K responder 0 0 · · · 0 +1 K

Non-responder 0 0 · · · 0 0 0

Consider a drug with dosages T = {1, 2, . . . , 𝐾} and binary po-

tential outcome 𝑌 (𝑡) ∈ {0, 1} for all 𝑡 ∈ T . We define an individual

to be a type-𝑘 responder, if the individual can be cured given at least

dosage𝑘 , i.e.,𝑌 (𝑡) = 0when 𝑡 ≤ 𝑘−1 and𝑌 (𝑡) = 1when 𝑡 ≥ 𝑘 (here
we implicitly assume the monotonicity assumption that 𝑌 (𝑡1) ≥
𝑌 (𝑡2) for 𝑡1 ≥ 𝑡2). Under the above monotonicity assumption, the

probability of being all types treatment responders can be identified,

i.e., 𝑃 (𝐴 = 𝑘 | 𝑋 ) = 𝑃 (𝑌 (𝑘) = 1 | 𝑋 ) − 𝑃 (𝑌 (𝑘 − 1) = 1 | 𝑋 ) for all
𝑘 ≥ 1. Without the monotonicity assumption, we can similarly de-

velop the Boole-Frechet-Hoeffding bounds on the joint probability

of discrete events: max(0, 𝑃 (𝐴 and 𝐵 | 𝑋 ) + 𝑃 (𝐶 | 𝑋 ) − 1) ≤ 𝑃 (𝐴
and 𝐵 and 𝐶 | 𝑋 ) ≤ min(𝑃 (𝐴 | 𝑋 ), 𝑃 (𝐵 | 𝑋 ), 𝑃 (𝐶 | 𝑋 )), where
the left-hand-side can be bounded by using the binary-case Boole-

Frechet-Hoeffding bounds again.

Furthermore, for complex treatments, we can set a threshold 𝐶 ,

e.g., 𝐶 = 0, to convert real-valued outcomes into binary outcomes.

Specifically, the outcomes greater than the threshold would be

classified as +1, while those less than the threshold as -1. This

allows us to reformulate the decision-making problem as a binary

classification issue involving positive responders. Then we can use

our CTRL to bound the probability of an individual is a positive

responder, i.e., 𝑃 (𝑌 (−1) < 𝐶, 𝑃 (𝑌 (+1) >= 𝐶)) again.
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